Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics

نویسندگان

  • Jae In Kim
  • Sungsoo Na
  • Kilho Eom
چکیده

Normal mode analysis (NMA) with coarse-grained model, such as elastic network model (ENM), has allowed the quantitative understanding of protein dynamics. As the protein size is increased, there emerges the expensive computational process to find the dynamically important low-frequency normal modes due to diagonalization of massive Hessian matrix. In this study, we have provided the domain decomposition-based structural condensation method that enables the efficient computations on low-frequency motions. Specifically, our coarse-graining method is established by coupling between model condensation (MC; Eom et al., J Comput Chem 2007, 28, 1400) and component mode synthesis (Kim et al., J Chem Theor Comput 2009, 5, 1931). A protein structure is first decomposed into substructural units, and then each substructural unit is coarse-grained by MC. Once the NMA is implemented to coarse-grained substructural units, normal modes and natural frequencies for each coarse-grained substructural unit are assembled by using geometric constraints to provide the normal modes and natural frequencies for whole protein structure. It is shown that our coarse-graining method enhances the computational efficiency for analysis of large protein complexes. It is clearly suggested that our coarse-graining method provides the B-factors of 100 large proteins, quantitatively comparable with those obtained from original NMA, with computational efficiency. Moreover, the collective behaviors and/or the correlated motions for model proteins are well delineated by our suggested coarse-grained models, quantitatively comparable with those computed from original NMA. It is implied that our coarse-grained method enables the computationally efficient studies on conformational dynamics of large protein complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supporting Information Domain Decomposition-Based Structural Condensation of Large Protein Structures for Understanding Their Conformational Dynamics

Supplementary Method: How to Construct the Constraint Matrix Here, we provide the detailed procedure to construct the constraint matrix, because it is essential process in component mode synthesis that is employed in our coarse-graining method. For straightforward illustration, instead of considering complex structure such as protein structure, we restrict ourselves to one-dimensional spring sy...

متن کامل

Singular Value Decomposition of Protein Conformational Motions: Application to HIV-1 Protease

Protein conformational motions play a critical role in biochemical catalysis. Through anharmonic conformational deformations during the course of its function a protein can change the chemical environment of its reactive site in order to bind substrates and catalyze reactions. An illustrative example of these changes is the opening and closing of the binding site of HIV-1 protease (HIV Pr) that...

متن کامل

A Combined Experimental and Theoretical Study of Optoelectronic and Structural Properties of a New Copolymer Based on Polyvinylcarbazole (PVK) and Poly (3-hexylthiophene) (PHT)

In this paper we report on a combination of experimental and theoretical study of a new copolymer based on carbazole and methylthiophene (Cbz-Mth), in their neutral and oxidized states. We discuss the influence of chain length on conformational and optoelectronic properties with the DFT method. Conformational analysis shows that there are no big changes in the structural parameters of neutral o...

متن کامل

Conservation and specialization in PAS domain dynamics.

The PAS (Per-ARNT-Sim) superfamily is presented as a well-suited study case to demonstrate how comparison of functional motions among distant homologous proteins with conserved fold characteristics may give insight into their functional specialization. Based on the importance of structural flexibility of the receptive structures in anticipating the signal-induced conformational changes of these...

متن کامل

Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2011